

C.E. PRIMARY ACADEMY (HANDSWORTH)

Calculation Policy

Subject Leader: J Saran

Date: January 2022

Date for Review: January 2023

Holy Trinity CE Primary Academy Vision Statement

At Holy Trinity CE Primary Academy our distinctive Christian values are at the heart of all we do. Our children develop independent curiosity, acquire a life-long appetite for learning and become well-rounded individuals who achieve their full potential, both personally and academically.

"For I know the plans I have for you," declares the Lord, "plans to prosper you and not to harm you, plans to give you hope and a future." – Jeremiah 29:11

Holy Trinity's calculation policy supports White Rose Maths which used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy has been adapted from the White Rose Maths Calculation policy with material added. It is a working document and will be revised and amended as necessary. At Holy Trinity, we use the calculation methods provided by White Rose Maths. Our calculation policy supports our teachers to introduce and embed key concepts. At Holy Trinity, we link key manipulatives and representations through concreate, pictorial and abstract methods. This policy provides consistency of approach, enabling children to progress stage by stage through models and representations they recognise from previous teaching. By providing children with the opportunity to work on different representations of the same mathematical idea allows for deeper conceptual understanding and fluency. Teachers present strategies and equipment appropriate to children's level of understanding.

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Counting on using number lines using cubes or Numicon.

A bar model which encourages the children to count on, rather than count all.

4 + 3 = 7

Bar model (single)

 $\begin{array}{c|c} ? & 7 \\ \hline 4 & 3 \end{array} \end{array}$

The abstract number line:

What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2?

4 + 2

Bar model (multiple)

TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8	10s 1s 1111 1111 4 9	$ \begin{array}{c} 41 + 8 \\ & 1 + 8 = 9 \\ 40 + 9 = 49 \\ & 44 + 1 \\ & 44$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. 36 + 25 10s 1s 6 1	Children to represent the base 10 in a place value chart. $ \begin{array}{c c} $	Looking for ways to make 10. 36 + 25 = 30 + 20 = 50 5 + 5 = 10 50 + 10 + 1 = 61 1 5 36 Formal method: $\frac{+25}{61}$ 1
Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.	Children to represent the counters in a place value chart, circling when they make an exchange.	243 <u>+368</u> 611 ^{1 1}

Conceptual variation: different ways to ask children to solve 21 + 34

(⁷)	Word problems: In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?	21 <u>+34</u>	
\times	21 + 34 = 55. Prove it	21 + 34 =	
		1 = 21 + 34	Missing digit problems:
?		Calculate the sum of twenty-one and thirty-four.	10s 1s 0 0 0 0 0 0 ?
21 34			? 5 -

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3 = [] = 4 - 3
4-3=1	XXXX XXX	4 3?
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 – 2 = 4	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
1 2 3 4 5 6 7 8 9 10		461111111

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete		Pictorial	Abstract
Repeated grouping/repeated addition 3 × 4		Children to represent the practical resources in a picture and use a bar model.	₃ × 4 = 12
3 gr w ea	There are 8 equal groups, with 4 in each group.	88 88 88	4 + 4 + 4 = 12
		? 5 × 5 = 25	
		? = 3 + 3 + 7 = 21 $3 + 3 + 7 = 21$ $7 + 3 = 21$	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		Boys 3 3 3 3 3 Girls 3	

Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. 3 × 4 = 12
1000010000100001 0 4 8 12	0 4 8 12
0 1 2 3 4 5 6 7 8 9 10 11 12 13 W 15 16 17 18 19 20	x 4 3 6 9 12 A red car travels 3 miles. A blue car 4 times further. How far does the blue car travel?
	e.g.: 00001000010000100001 12 12 12 12 12 12 12 12 12 1

Use arrays to illustrate commutativity counters and other objects can also be used. 2 × 5 = 5 × 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g.
2 lots of 5 5 lots of 2 5+5+5+5=20		$10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5
4 × 5 = 20 5 × 4 = 20		
Partition to multiply using Numicon, base 10, Dienes or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used
Hundreds Tens Ones 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6 40 40 used
Image: Second		

$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$		
Formal column method with place value counters (base 10 can also be used.) 3×23	Children to represent the counters pictorially. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ 20 3 60 + 9 = 69 23 $\frac{\times 3}{69}$

When children start to multiply 3d × 3d and 4d × 2d etc., they should be confident with the abstract:

To get 744 children have solved 6×124 . To get 2480 they have solved 20×124 .

Conceptual variation: different ways to ask children to solve 6 × 23

23 23 23 23 23 23	Mai had to swim 23 lengths, 6 times a week.	Find the product of 6 and 23	What is the calculation?
23 23 23 23 23 23	How many lengths did she swim in one week? With the counters, prove that 6 x 23 = 138	$6 \times 23 =$ $= 6 \times 23$ 6 23 $\times 23 \times 6$	100s10s1s00

Calculation policy: Division

Key language: share, group, divide, divided by, half.

 2d ÷ 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. 13 ÷ 4 Use of lollipop sticks to form wholes- squares are made because we are dividing by 4. There are 3 whole squares, with 1 left over. 	Children to represent the lollipop sticks pictorially.	13 ÷ 4 – 3 remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over' 4 + 4 + 5 + 4 + 5 + 4 + 5 + 5 + 5 + 5 +		
Sharing using place value counters. $42 \div 3 = 14$ $\bigcirc \bigcirc $	Children to represent the place value counters pictorially.			

100s	10s	1s
100 100 100 100		00000
100 000		00000
1	2	3

Make 615 with place value counters. 1.

How many groups of 5 hundreds can you make with 2. 6 hundred counters?

Exchange 1 hundred for 10 tens. 3.

4. How many groups of 5 tens can you make with 11 ten counters?

5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters $2544 \div 12$

1000s 100s 10s **1s** We can't group 2 thousands into 00 0000 0000 groups of 12 so will exchange them. 1000s 100s 10s 1s 12 2544 We can group 24 hundreds 0000 into groups of 12 which leaves with 1 hundred.

10s

Children to the calculation using the short division scaffold.

1000s	100s	10s	1s 0000	After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens. 2 2 2
1000s	100s	10s	1s	After exchanging the 2 tens, we 12 2544 have 24 ones. We can group 24 ones 24 into 2 group of 12, which leaves no remainder. 14 12 24 24 24 24 0

Conceptual variation: different ways to ask children to solve 615 ÷ 5

Using the part whole model below, how can you divide 615 by 5 without using	I have £615 and share it equally between 5 bank accounts. How		What is the cal What is the an		
615 short division?	much will be in each account?	5 615	100s	10s	1s
	615 pupils need to be put into 5 groups. How many will be in each group?	615 ÷ 5 = [] = 615 ÷ 5			

The following sections are the appendices. They outline the skills for representations and models used at Holy Trinity C.E School.

Skill	Year	Representations and models	
Add two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Add 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead strings (20) Number tracks Number lines (labelled) Straws
Add three 1-digit numbers	2	Part-whole model Bar model	Ten frames (within 20) Number shapes
Add 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square

Skill	Year	Representations and models	
Add two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters Column addition
Add with up to 3-digits	3	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with up to 4-digits	4	Part-whole model Bar model	Base 10 Place value counters Column addition
Add with more than 4 digits	5	Part-whole model Bar model	Place value counters Column addition
Add with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column addition

Skill	Year	Representations and models	
Subtract two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Subtract 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead string (20) Number tracks Number lines (labelled) Straws
Subtract 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Subtract two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters Column addition

Skill	Year	Representations and models	
Subtract with up to 3- digits	3	Part-whole model Bar model	Base 10 Place value counters Column addition
Subtract with up to 4- digits	4	Part-whole model Bar model	Base 10 Place value counters Column addition
Subtract with more than 4 digits	5	Part-whole model Bar model	Place value counters Column addition
Subtract with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column addition

Skill: Subtra	ct numbers with up to 4	digits	Year: 4
(4,357) (2,735) ? (4,357) (2,735) ? (4,357) (2,735) ?	4,357 2,735 ? 4,357 2,735 ? 357 - 2,735 = 1,62	³ /4357 - 2735 1622 22	Base 10 and place value counters are the most effective manipulatives when subtracting numbers with up to 4 digits. Ensure children write out their calculation alongside any concrete resources so they can see the links
Thousands Hundreds Tens </th <th>Ones Thousands Hundreds</th> <th>Tens Ones</th> <th>to the written column method.</th>	Ones Thousands Hundreds	Tens Ones	to the written column method.
			Plain counters on a place value grid can also be used to support learning.

Glossary

Addend - A number to be added to another.

Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.

Complement – in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference – the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange – Change a number or expression for another of an equal value.

Minuend – A quantity or number from which another is subtracted.

Partitioning – Splitting a number into its component parts.

Reduction – Subtraction as take away.

Subitise – Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.

Total - The aggregate or the sum found by addition.

Times Tables

Skill	Year	Representations and models	
Recall and use	2	Bar model	Ten frames
multiplication and		Number shapes	Bead strings
division facts for the		Counters	Number lines
2-times table		Money	Everyday objects
Recall and use	2	Bar model	Ten frames
multiplication and		Number shapes	Bead strings
division facts for the		Counters	Number lines
5-times table		Money	Everyday objects
Recall and use	2	Hundred square	Ten frames
multiplication and		Number shapes	Bead strings
division facts for the		Counters	Number lines
10-times table		Money	Base 10
Skill	Year	Representatio	ns and models
---	------	---	---
Recall and use multiplication and division facts for the 3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 4-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 8-times table	3	Hundred square Number shapes	Bead strings Number tracks Everyday objects
Recall and use multiplication and division facts for the 6-times table	4	Hundred square Number shapes	Bead strings Number tracks Everyday objects

Skill	Year	Representatio	ons and models
Recall and use multiplication and division facts for the 7-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 9-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 11-times table	4	Hundred square Base 10	Place value counters Number lines
Recall and use multiplication and division facts for the 12-times table	4	Hundred square Base 10	Place value counters Number lines

Skill: 10 time	Year: 2										
	- - D 10	20	 30	+0 !	 50 d	 50 7	 08			\rightarrow	Encourage daily counting in multiples both forwards and
				6))		backwards. This can be supported using a number line or a hundred square.
	1	2	3 13	4	5	6	7	8	9		Look for patterns in the ten times table,
	21 31 41	22 32 42	23 33 43	24 34 44	25 35 45	26 36 46	47	28 38 48	29 39 49		using concrete manipulatives to support. Notice the
	51 61 71	52 62 72	53 63 73	54 64 74	55 65 75	56 66 76	77	58 68 78	79		pattern in the digits- the ones are always 0, and the tens increase by 1 ten each time.
	81 91	82 92	83 93	_		86 96	-	-	89 99	1	

Г

Skill: 3 times table

Year: 3

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the three times table, using concrete manipulatives to support. Notice the odd, even, odd, even pattern using number shapes to support. Highlight the pattern in the ones using a hundred square.

Year: 3

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the four times table, using manipulatives to support. Make links to the 2 times table, seeing how each multiple is double the twos. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

						1	2	3	4	5	6	7	8	9	10
						11	12	13	14	15	16	17	18	19	20
						21	22	23	24	25	26	27	28	29	30
		R		88		31	32	33	34	35	36	37	38	39	40
	H					41	42	43	44	45	46	47	4 8	49	50
						51	52	53	64	55	56	57	58	59	60
6	12	18	24	30		61	62	63	64	65	66	67	68	69	70
76					1	71	72	73	74	75	76	77	78	79	80
36	42	48	54	60		81	82	83	84	85	86	87	88	89	90
66	72	7 <mark>8</mark>	84	90		91	92	93	94	95	96	97	98	99	100

-00	00	0	 22	0	00	\mathbf{x}	-(\mathbf{x}	\mathbf{x}	\mathbf{X})—
	12										\rightarrow

Skill: 6 times table

Year: 4

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

Skill: 9 times table

Year: 4

9	18	27	3 <mark>6</mark>	45
5 <mark>4</mark>	6 <mark>3</mark>	72	8 <mark>1</mark>	90

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	2	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	64	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	1	73	74	75	76	77	78	79	80
8)	82	83	84	85	86	87	88	89	0
91	92	93	94	95	96	97	98	9	100

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.

Skill: 7 times table

Year: 4

Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square. The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.

Skill: 11 times table 22 33 44 55 66 1 2

121

132

110

11

77

88

99

1	2	3	4	5	6	7	8	9	10
1	12	13	14	15	16	17	18	19	20
21	2	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	65	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	7	78	79	80
81	82	83	84	85	86	87	8	89	90
91	92	93	94	95	96	97	98	9	100

Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the eleven times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100

Year: 4

Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the 12 times table, using manipulatives to support. Make links to the 6 times table, seeing how each multiple is double the sixes. Notice the pattern in the ones within each group of five multiples. The hundred square can support in highlighting this pattern.

Year: 4

Multiplication

Skill	Year	Representati	ons and models
Solve one-step problems with multiplication	1/2	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1- digit numbers	3/4	Place value counters Base 10	Short written method Expanded written method
Multiply 3-digit by 1- digit numbers	4	Place value counters Base 10	Short written method
Multiply 4-digit by 1- digit numbers	5	Place value counters	Short written method

Skill	Year	Representation	ns and models
Multiply 2-digit by 2- digit numbers	5	Place value counters Base 10	Short written method Grid method
Multiply 2-digit by 3- digit numbers	5	Place value counters	Short written method Grid method
Multiply 2-digit by 4- digit numbers	5/6	Formal written method	

Teachers may decide to first look at the expanded column method before moving on to the short multiplication method. The place value counters should be used to support the understanding of the method rather than supporting the multiplication, as children should use times table knowledge.

Year: 3/4

Year: 3/4

When moving to 3digit by 1-digit multiplication, encourage children to move towards the short, formal written method. Base 10 and place value counters continue to support the understanding of the written method. Limit the number of exchanges needed in the questions and move children away from resources when multiplying larger numbers.

When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.

Year: 5

Skill: Multipl	Year: 5/6						
	TTh	Th	Н	Т	0		When multiplying 4- digits by 2-digits, children should be
		2	7	3	9		confident in the written method.
	×			2	8		If they are still struggling with times
	22	1 5	9 3	1 7	2		tables, provide multiplication grids to
	5 1	4	7 1	8	0		support when they are focusing on the use of the method.
	7	6	6	9	2		Consider where
2,739 × 28 =	76,6	692	1				exchanged digits are placed and make sure this is consistent.

Division

Skill	Year	Representatio	ons and models
Solve one-step problems with division (sharing)	1/2	Bar model Real life objects	Arrays Counters
Solve one-step problems with division (grouping)	1/2	Real life objects Number shapes Bead strings Ten frames	Number lines Arrays Counters
Divide 2-digits by 1- digit (no exchange sharing)	3	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (sharing with exchange)	3	Straws Base 10 Bar model	Place value counters Part-whole model

Skill	Year	Representatio	ons and models		
Divide 2-digits by 1- digit (sharing with remainders)	3/4	Straws Base 10 Bar model	Place value counters Part-whole model		
Divide 2-digits by 1- digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division		
Divide 3-digits by 1- digit (sharing with exchange)	4	Base 10 Bar model	Place value counters Part-whole model		
Divide 3-digits by 1- digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division		

Skill	Year	Representation	ns and models
Divide 4-digits by 1- digit (grouping)	5	Place value counters Counters	Place value grid Written short division
Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples
Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples

Skill: Divid	Year: 3/4		
rens $rens$	→ 4	52 $7 ? ? ? ?$ $4 = 13$	When dividing numbers involving an exchange, children can use Base 10 and place value counters to exchange one ten for ten ones. Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows. Flexible partitioning in a part-whole model supports this method.

	Skill:	Year: 6									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									36 When children begin to divide up to 4- digits by 2-digits, written methods become the most accurate as concrete and pictorial representations become less effection Children can write of multiples to support their calculations wite		
)		0	4	8	9	larger remainders.
7,335 ÷ 15 = 489 $_{15}$ $_7$ $_7$ $_3$ $_{13}^{13}$ $_{13}^{13}$ $_5$											Children will also solve problems with remainders where the
15 30 45 60 75 90 105 120 135 150											quotient can be rounded as appropriate.

Skill: Divide multi-digits by 2-digits (long division)													Year: 6	
1	2 -	0 4 3	3 3 7 7	6 2 0 2 2 0	(×30) (×6)	$12 \times 1 = 12$ $12 \times 2 = 24$ $12 \times 3 = 36$ $12 \times 4 = 48$ $12 \times 5 = 60$ $12 \times 6 = 72$ $12 \times 7 = 84$ $12 \times 8 = 96$ $12 \times 7 = 108$ $12 \times 10 = 120$			43			12 =	= 36	Children can also divide by 2-digit numbers using long division. Children can write out multiples to support their calculations with larger remainders.
							15	0	4	8	9 5		$1 \times 15 = 15$	Children will also
							-	6	0	0	0	(×400	$2 \times 15 = 30$	solve problems with
-		70		4	-	400	-	1	3	3	5	(~400	$3 \times 15 = 45$	remainders where the
Ľ	(,3	35) -	- 1	b =	489	-	1	2	0	0	(×80)	$4 \times 15 = 60$	quotient can be
									1	3		(5 × 15 = 75	rounded as
							-		1	3	5	(×9)	$10 \times 15 = 150$	appropriate.
											0	, ,		

Glossary

Array – An ordered collection of counters, cubes or other item in rows and columns.

Commutative – Numbers can be multiplied in any order.

Dividend – In division, the number that is divided.

Divisor – In division, the number by which another is divided.

Exchange – Change a number or expression for another of an equal value.

Factor – A number that multiplies with another to make a product.

Multiplicand – In multiplication, a number to be multiplied by another.

Partitioning – Splitting a number into its component parts.

Product – The result of multiplying one number by another.

Quotient - The result of a division

Remainder – The amount left over after a division when the divisor is not a factor of the dividend.

Scaling – Enlarging or reducing a number by a given amount, called the scale factor